Arithmetic Progressions

$>$ Look at the list of numbers $1,3,5,7 \ldots \ldots \ldots$
$>$ Each of the numbers in the list is called a term.
$>$ An arithmetic progression is a list of numbers in which each term is obtained by adding a fixed number to the preceding term except the first term.
$>$ This fixed number is called the common difference of the AP. It can be positive, negative or zero
$>$ The general form of an AP is: $a, a+d, a+2 d, a+3 d, \ldots$
$>$ An AP with finite number of terms is a finite AP. That means the AP has a last term.
An AP which does not have finite number of terms is an infinite AP. That means the AP does not have a last term. $\mathrm{n}^{\text {th }}$ term of an AP:
Let $a_{1}, a_{2}, a_{3}, \ldots \ldots$ Be an AP whose first term a_{1} is a and the common difference is d .
Then,
The Second term

$$
\begin{aligned}
& a_{2}=a+d=a+(2-1) d \\
& a_{3}=a_{2}+d=(a+d)+d=a+2 d=a+(3-1) d \\
& a_{4}=a_{3}+d=(a+2 d)+d=a+3 d=a+(4-1) d
\end{aligned}
$$

The third term

The fourth term
\qquad
...............
Looking at the pattern, we can say that the $\boldsymbol{n}^{\text {th }}$ term $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$.
So, the $\boldsymbol{n}^{\text {th }}$ term a_{n} of the AP with first term a and common difference d is given by $a_{n}=a+$ $(n-1) d$.

Sum on n terms in an AP:
The sum of the first n terms of an AP is given by $S=-\quad\left(\begin{array}{ll}n & 1\end{array}\right) d$

